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We show via a numerical study of the asymptotic spectral behavior of filtered and tapered free-
electron-laser (FEL) oscillators that tapering must in general be assisted by filtering to prevent spectral
broadening. To interpret these results, we present a theoretical analysis of the sideband instability, in-
cluding the transient regime. For long amplifiers, an analysis of trapped particles appears to be relevant.
This is not the case for an FEL oscillator where the standard ‘“deeply-trapped-electrons” and
“exponential-regime” assumptions are most often irrelevant. Moreover, spectral broadening is not relat-
ed in a simple way to a sideband inhibition, due to the multiplicity of nonlinear mechanisms involved in

FEL dynamics.

PACS number(s): 41.60.Cr, 52.35.Mw, 52.35.Ra

I. INTRODUCTION

It is expected, on both theoretical and numerical
grounds, that the sideband instability in high-power free-
electron lasers (FEL’s) is the first step of a broadening of
the emitted spectrum, due to the diffusion of the electrons
in their phase space (preceding paper I). More than an
academic investigation of the sideband mechanism, the
present paper is an attempt to understand the transient
regime responsible for spectral broadening. This work
will show that the realistic FEL spectral behavior is very
intricate and cannot be understood by simply defining the
sideband generation as a trapping instability [1].

Many publications are devoted to the sideband genera-
tion, associated in most cases with complementary mech-
anisms such as filtering or tapering (lowering of the pon-
deromotive bucket in the electron phase space). Tapering
has often been said to slow sideband generation [2,3], or
even to inhibit it [4]. This can be due to two effects: first
the distortion of the orbit when the resonant electron is
slowed down at a rate comparable with the synchrotron
motion. Second, for a tapered wiggler, the bucket is
smaller so that a smaller number of electrons can couple
with the sidebands.

However, the concept of tapering is meaningful only
with a monochromatic laser field. Indeed, many publica-
tions [5,6] emphasize that a small amount of sideband can
detrap electrons from the ponderomotive bucket, which
can make the tapering inefficient.

Now, the effect of filtering is not trivial. On one hand,
following paper I, one expects that the extraction
efficiency is decreased by filtering. Such a result has been
stated in many publications, either for nontapered
wigglers [7] or tapered ones [8,9]. On the other hand, the
tapering scheme may be more efficient for a filtered FEL,
so that one can expect to enhance the efficiency; this pre-
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diction has also been observed [10]. Experimental data
also corroborate these statements. Indeed, in Ref. [11],
three different tapered wigglers were used and spectral
broadening was controlled by detuning the optical cavity
[7]; it is claimed that, for some cavity detuning, broad-
spectrum regimes are observed whatever the tapering.
For a shorter optical cavity, the spectrum gets narrow
and the efficiency is improved [11] (depleted [7]) for ta-
pered (nontapered) wigglers. For some intermediate de-
tuning, the plot of the efficiency versus time, within a sin-
gle macropulse, exhibits a very subtle behavior since the
tapering begins to increase the efficiency, but then side-
bands appear and the efficiency collapses.

Considering parameters close to those of the experi-
ment of Ref. [7], but in the continuous-beam limit, we ex-
hibited, in paper I, a strong spectral broadening
phenomenon, related to some randomization of the elec-
tron phase space. In such a case, tapering becomes
inefficient due to the very complicated phase-space struc-
ture [12]. Note that this second regime is characteristic
of high-power FEL’s and requires high electronic
currents and long interaction times. This is why the
broad spectrum regime was only observed in few experi-
ments, up to now [7]. Therefore, there is clearly a thresh-
old in the physical experimental parameters that controls
which asymptotic regime will occur.

Experimental evidence shows that tapering is not ex-
pected to eliminate the sidebands, but only to delay them.
Then, trying to understand the variety of FEL behaviors
depending on the rate of tapering, it is necessary to use a
second independent parameter that governs the spectral
regime. The simplest one is a filter. For theoretical pur-
poses, a filter provides a better control parameter than
the electronic current, the pulse length, or the optical
cavity detuning, since it does not change the coupling
constants of the problem. Furthermore, it can be easily
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implemented in our numerical simulations working on a
Fourier expansion of the laser field.

We therefore consider the spectral behavior of a high-
current FEL oscillator, with parabolic tapering and a
filtering device. The starting point of our analysis is a nu-
merical investigation versus the tapering amplitude
AB /B and the filter width (Sec. II). This two-parameter
set of numerical experiments shows a transition between
narrow and broad spectra. To understand this transition,
we first present an analysis of the sideband instability and
then consider the relation between sideband inhibition
(by tapering and/or filtering) and spectral broadening.

To investigate the effects of sideband generation, nu-
merical simulations are required and widely used
[2-4,6,8—10]. Other studies are devoted to the interpre-
tation of the sideband instability from a basic point of
view [5,13—-18]. As an academic starting point, most of
these papers assume that electrons are initially bunched
on the orbits of the ponderomotive well. Even if they
shed some light on the mechanisms of the sideband insta-
bility, one should question their reliability for a realistic
description. Therefore, it is necessary to address the con-
nection between the academic approach and full numeri-
cal simulations.

As a first step of our analysis of the sideband instabili-
ty, we provide a generalization of the standard sideband
model, starting with a monochromatic laser and an elec-
tron distribution in equilibrium in the ponderomotive
wells (Secs. III and IV), but not assuming an exponential
growth of the instability. This allows us to study the
transient regime. We will show that, for most oscillator
experiments, the transient regime actually lasts longer
than the wiggler length, which then makes irrelevant the
usual asymptotic exponential gain calculations.

As a second step, we implement the time-dependent
perturbation theory presented in Sec. III by using an adi-
abatic assumption. Within an investigation of the side-
band generation in a strongly tapered long amplifier (Sec.
V), we obtain (i) an expected result about the importance
of the trapping ratio and (ii) a more surprising outcome
about the adiabaticity of the trapped particle motion.
This allows us to interpret the sideband depletion in a
strong tapered amplifier. Nevertheless, sidebands appear
to be inhibited mainly because an amplifier is a finite-time
experiment: the same tapering rate within a resonator
experiment would lead to a quite different spectral
behavior.

As a third step, we consider the system with more real-
istic nonbunched nonequilibrium initial conditions.
Low-noise numerical simulations allow us to test whether
or not the sideband will grow in a given tapered and
filtered system. Then we come back to the problem of
the evolution over a large number of round-trips for a ta-
pered FEL oscillator assisted by filtering (Sec. VI). In
particular, we show that the sideband instability in a
filtered system does not necessarily lead to a broad spec-
trum (that is a spectrum as wide as the filter): mode com-
petition between fundamental and sideband modes can
actually lead to a spectrum much narrower than the
filter.

As mentioned in paper I, the spectral dynamics can be

studied using a one-dimensional (1D) model. For that
purpose, we assume that the laser electric field &, and
electron density are proportional to Gaussian radial
profiles S(r) and T'(r). This leads to the following set of
equations where we recognize the standard 1D formula-
tion [1,19,20]. For analytical investigations, the Vlasov-
Maxwell approach is well suited especially if we define
p =72, where 7 is the electron kinetic energy normalized
to its rest energy. The electronic motion can then be put
easily under a Hamiltonian form with conjugate variables
(,p=y?) and with the transformed density
h(z,,p)=g(z,¥,Vp)/Vp. We define a reference wave
number k; and recall the equations of the model:
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where the on-axis electric field &, depends on the z coor-
dinate, p, is the number of electrons per unit of length,
and r, and r; are the quadratic mean radius of the elec-
tron and laser beams. In the following we will consider
without loss of generality that r2=2r?, which leads to
(ST )(wr})"">=1/2. The Hamiltonian H describing the
electronic motion is defined by Egs. (3b) and (3c).

II. SPECTRAL BEHAVIOR
VERSUS TAPERING AND FILTERING

This section is devoted to the analysis of the spectral
behavior of an FEL oscillator, which basically implies
that the wiggler length and the synchrotron period have
the same order of magnitude at saturation.

As a first step, let us consider a uniform wiggler
(squares in Fig. 1). We know from paper I that the cou-
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pling between the sideband and the fundamental modes
will lead to a broad spectrum. We define a central mode
at the wave number k; of maximum linear gain. A
square filter with a bandwidth ¥ is used to cut off the
modes of wave number k with |k —k,|/k;, > F/2. To
analyze the effects of this filter, we define the efficiency p
as the ratio of the extracted laser energy to the initial
electron __ energy, the relative spectral width
3=V (k?)—(k)?/k,, and the brightness B=p/Z.

On one side for large enough filters (¥>3% in our
case), Fig. 1(a) shows that the extracted efficiency p in-
creases monotonously with ¥, while Fig. 1(b) shows that
the brightness B reaches its universal value B=Vv'3/2.
This is consistent with a laser spectrum looking like a
plateau truncated by the filter, and we call this the broad
spectrum regime. On the other side, Fig. 1(b) shows a
sharp transition toward high values of B for F<3%: the
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FIG. 1. Behavior of a high-power filtered FEL. (a) For a uni-
form wiggler, the extracted efficiency is roughly proportional to
the filter width F: the spectrum is nearly flat and merely trun-
cated by the filter. For a strongly tapered wiggler, the efficiency
versys F decreases because of the spectral broadening. (b) Nar-
row filters prevent spectral broadening, so that the asymptotic
spectral width is much smaller than the filter width and the
brightness B is large. As soon as the filter is wide enough to al-
low spectral broadening, the brightness is constant and equal to
its universal value B=V"3/2=0.86. For a tapered wiggler, the
broadening is simply delayed.

sideband has been suppressed, and the laser spectrum is
much narrower than the filter. This case will be referred
to hereafter as the narrow spectrum regime.

The problem of determining how narrow the laser
spectrum can be, once the sideband is inhibited, is under
investigation and will be addressed elsewhere. As a pre-
liminary result, it seems that the ultimate relative width
is less than 10™* and can be obtained with a filter band-
width in the range of F=1% (in our case the sideband
grows with a relative frequency shift of about 3%). So,
by using rough gratings, it is possible to eliminate the
sideband and then, by a purely dynamical effect, to get a
very sharp spectrum. This result has to be validated so
that FEL devices can be used for spectroscopy purposes.

As a second step, let us consider a tapered wiggler
(stars and circles in Fig. 1). Simulations presented in pa-
per I have shown that for a nonfiltered (F— ) high-
power FEL, tapering becomes inefficient: it does not
eliminate spectral broadening and does not increase the
efficiency. A two-parameter analysis is then necessary to
understand the effect of tapering for a given value of the
filter. We consider a parabolic profile of the wiggler mag-
netic field defined by

B(z)=B0——2—?22 ,

w

where z is the longitudinal position ranging from O to the
length of the wiggler Ly, (since most of FEL oscillator
wigglers are short, such a simple parametrization of the
wiggler magnetic-field envelope is in general sufficient for
our purpose). For each value of the magnetic field, one
can define the energy of the resonant electron

kp

Yy [1+%a,ﬁ(z)] . (5)

riz)=

For example, with a wiggler parameter a,, close to 0.75, a
50% variation of the magnetic field gives a 9% relative
decrease for the resonant energy.

It is clear from Fig. 1(b) that the spectral behavior is
affected by tapering since a larger filter bandwidth is
sufficient to reach a given brightness. Nevertheless, for
large enough filters, the broad-spectrum regime is
reached.

The intricate consequences of filtering and tapering on
the efficiency [7-11] are manifest in Fig. 1(a) where the
efficiency versus filtering presents a positive (negative)
slope for small (large) tapering rates. It should be noticed
that maximum efficiency can be reached in two basically
different ways. One can let the spectrum broaden and,
following paper I, electronic diffusion enhances the
efficiency, or one can filter the spectrum and use a ta-
pered wiggler to decelerate the electrons.

The map in Fig. 2 aims at pointing out the diversity of
the asymptotic regimes. The plane (AB /B, #) is divided
into four regions according to the value of the brightness:
black points indicate a brightness B >>1 and white points
indicate a brightness of the order of magnitude unity [a
criterion based on the fraction of the total laser energy
enclosed in a 1% spectral band around k; leads to the
same partition of the (AB /B, ¥) plane]. This map reveals
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FIG. 2. Spectral behavior of a tapered and filtered system as
a function of tapering amplitude AB /B and relative filter width
F. A sharp transition appears between broad-spectrum and
narrow-spectrum regimes. In any case tapering must be assisted
by filtering to prevent spectral broadening. However, tapering
has an effect since it allows wider filters. See the text for a de-
tailed description.

that the transition between the narrow- and broad-
spectrum regimes depends on tapering: although taper-
ing does not always imply a monochromatic laser field,
we see that it makes it easier to avoid the sideband insta-
bility and the consecutive spectral broadening. However,
it appears that tapering always needs to be assisted by
filtering. Furthermore, a strong enhancement of the
tapering is required to compensate for a small enlarge-
ment of the filter. Since a too strong tapering (say AB /B
beyond 50%) also switches off the interaction, tapering
cannot be used efficiently to control the spectrum of
high-power FEL oscillators.

More precisely, for a narrow window (region I in Fig.
2), the sideband is clearly suppressed, so that we get a
very narrow spectrum. For a large filter (region IV),
tapering becomes inefficient. In that case, the sideband
develops and nonlinear difference frequency generation
leads to a broad spectrum with universal brightness
B=V'3/2, paper 1]. This implies that, even with a 50%

variation of the magnetic field, we observe the same ex-
tracted efficiency and the same spectral width as for a
nontapered wiggler. For realistic high-power FEL’s, the
broadening mechanism is strong and fast enough to com-
plicate the phase-space structure so that it is no longer
possible to define the resonant electron and its adiabatic
motion induced by tapering.

Between these two extreme regimes (inhibited sideband
and broad spectrum) we observe two intermediary re-
gions. Going from region IV to region III, the brightness
gets somewhat higher than the universal value: the
effects of filtering begin to appear. But going from region
III to region II one crosses a sharp transition line, and
the spectral width drops to very small values (down to
numerical resolution and in any case much smaller than
the filter width).

III. SIDEBAND GROWTH
FOR DEEPLY TRAPPED ELECTRONS

To get more insight in the dynamics of spectral
broadening, we present an analysis of the sideband insta-
bility, including the transient regime. In fact, one usually
works in the asymptotic regime by computing exponen-
tial growth rates [13]. But if we consider an oscillator,
the synchrotron length at saturation is close to the
wiggler length, so that the sideband exponential growth
rate is not relevant, as will be seen, for instance, in Fig. 3.

We will define an equilibrium characterized by a mono-
chromatic laser field &, and a stationary electronic distri-
bution h,. A perturbation taking into account the cou-
pling to new laser modes &, with n70 makes this equi-
librium unstable. An integro-differential equation will be
derived for the evolution of the sidebands in the linear re-
gime, when the initial electronic distribution & is peaked
at the bottom of the potential wells. This equation can be
solved for all times without supposing an exponential
growth. Because electrons are coupled to the laser field
through its real part, the modes &, and & _, are coupled
[14] and will have to be considered within the same calcu-
lation.

For a  monochromatic laser field  6y(z)
=|64(z)|exp *'?, the force —3d,H, acting on an elec-
tron is from Eq. (3¢):

—3,Hy=1La,#,|6olsin(v—¢) , 6)

and is therefore 27 periodic in the variable {=¢—4,
which takes into account the drift due to the changing
laser field. Using this variable, the dynamical equations
become

1
. 2 +o d 1 27N . 7
(d,¢+id,)| 6ol =pee cawﬁ’lfl _sz/; Son [T deh g prexp(—id) %)
(3, +(3,H)d:—(3:H)d, 1h(2,5,p)=0 , (8a)
d,Hy=(k,—d,¢)— L1k, (1+a}/2)/p , (8b)
—3.Hy=1%a,|6lsin(§) . (8¢c)
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The equilibrium is characterized by d,|6,/=0 and
d,h =0. This leads to

Zyoezcawﬂ,f+w dp 1
1

44 |6 2Wp 2w
X [ ho(g,p)exp(—i¢)
=v,=const , 9)
ho(§,p)=f(Hy(,p)) , (10

where f is any function and H|, is the periodic Hamiltoni-
an determined by Eqgs. (8b) and (8c) with d,¢=v, (the cal-
culation of v, is detailed in Appendix A):

Hy(&,p)=(k,—v,)p —1k;(1+a2 /2)In(p)
+1H 4,16, cos(§) . (11)
This Hamiltonian has elliptic fixed points given by
(=, =m+2mn ,

(12)
p=p,=tk (1+al/2)/(k,—v,).

Let us concentrate first on deeply trapped electrons, that
is, let us consider an equilibrium electronic distribution
ho(&,p)=f(Hy(&,p)), where f is peaked at the minimum
value of the Hamiltonian, Hy,({=m,p =p,) so that the
electron motion is harmonic. In this case, one can then
readily obtain the value v, of v, from Egs. (9) and (4):
2
Vi = — m . (13)
2‘/p r | 60| m

Actually, this formula involves the resonant energy 1/ p,,
which is itself a function of v [Eq. (12)]. One has there-
fore to solve a quadratic equation to find the exact value
of v,. Since v, will appear as a coupling constant for
the sideband growth with deeply trapped electrons,
it is useful to notice that a rough estimate gives
v, =(Q2 /k, (E oo /E1s ), Where Q,, is the pulsation of
the harmonic motion of the electrons at the bottom of the
wells. For a typical case where E .. ~E,, inside the op-
tical cavity, we get that v, ~Q2 /k, <<Q,.

The equilibrium described by Eqgs. (8)—(11) is unstable
when a new laser mode is assumed to have a small but
nonzero amplitude, which generates a non-2m-periodic
perturbation. Now, the Vlasov equation (8a) and the
Hamiltonian (11) have to be implemented by new terms
proportional to the sideband modes &, and & _,, where n
labels the relative frequency shift n /N. The dynamical
equations for the laser modes &, and the perturbed den-
sity h =hy+h, can be linearized in ., and h, to calcu-
late the first-order evolution of the sideband modes. The
details of this calculation are given in Appendix B, and
we obtain

(B, +id,) Y, =1v,Q, [1+%

X [ dz'sin[Q(z —2")]
X[Y,(z) =Y, (z)], (14

where Y,(z)=6,(z)exp(iB,z) and B,=v,+(n/N)(v,
—ky).

It appears, as expected, that symmetrical sidebands are
coupled, each pair being independent of the others as
long as we remain in the perturbative domain, at the first
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FIG. 3. Typical behavior of two coupled symmetrical side-
band modes, with a relative frequency shift =n /N =+1%, for
(a) electrons initially trapped at the bottom of the well, obtained
with Eq. (5) (dotted lines) and with a full multifrequency numer-
ical simulation of the Maxwell-Vlasov equations (2) and (3)
(solid and broken lines). One can see the transient and exponen-
tial regimes, and finally the saturation regime where perturba-
tion and Eq. (15) fail. Energies are in units of the pump-mode
energy and position should be compared to the synchrotron
length L;~3.4 m and the wiggler length L, =2m in this case;
(b) a realistic nonbunched initial condition, obtained with a full
multifrequency low-noise numerical simulation of the Maxwell-
Vlasov equations. We recover qualitative features of the ideal-
ized case (asymmetrical instability with a depletion of the high-
frequency sideband), except for a delay due to a preliminary
bunching phase.
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order. Note that the “natural” laser variable ¥ is the
electric field with a phase shift iB,z; this is consistent
with the standard choice made, for instance, in [18].
However, we do not assume here that Y varies slowly ei-
ther in amplitude or in phase. Furthermore, we do not
assume any peculiar form for the sideband evolution, so
that we can follow its whole history including the tran-
sient regime, from noise up to the exponential regime.
The price we pay for having a description valid for high
and nonexponential sideband gains is a restriction to the
deeply trapped electrons. However, this will give us in-
sight into the transient strong amplification of the side-
bands, which is necessary if one wants to deal with realis-
tic high-power FEL oscillators. Furthermore, this will
enable us to validate the numerical simulations per-
formed in more realistic situations. A natural way for ex-
tending the above treatment to a general initial equilibri-
um electronic distribution is presented in Sec. IV.

The evolution of the sidebands as given by Eq. (14) is
nonlocal in time. However, taking advantage of the sim-
ple sine form of the kernel, one can reduce Eq. (14) to a
simple matrix differential equation. Defining

A=Y, +Y*, I, =Y, —YE,),
P =i z 'si Q —z' ' ’
, zfodz sin[Q,(z —z") [I(2")
an—zfodz cos[Q,(z —z)]IL,(z")

one obtains

8k, —v) iv —v 0
A
- —iv Lk, =) —igv 0
ldz P = 0 0 0 —iQ)
0 0 1 iQ 0
A
i (15)
X|p
0

This equation shows that the sideband instability for
trapped electrons at the bottom of the well is essentially
controlled by two parameters: the synchrotron frequency
Q, (related to the amplitude |&,| of the pump mode) and
the phase derivative v, =d, ¢ (related to the phase veloci-
ty of the pump mode). The sideband growth rates for a
given initial condition &, ,(z=0) are controlled by the
eigenvalues of the matrix in Eq. (15). The eigenvalue of
largest imaginary part gives the sideband growth rate in
the exponential regime; since both coupled sidebands
&4, will in general (but not necessarily) have a com-
ponent on the corresponding eigenvector, they will have
the same exponential growth rate [Fig. 3(a)]. However,
since they have a different history during the transient re-
gime, their gains for one pass will in general be different.
Furthermore, it must be realized that most often in realis-
tic situations the asymptotic regime is not attained within
the wiggler length. In particular, even though they have
the same asymptotic exponential growth rate, the cou-

pled modes may have very asymmetrical behaviors when
a wiggler of finite length is considered [see L, =2m, for
instance, in Fig. 3(a)], which is in general the case when
dealing with oscillators: the transient regime lasts one or
a few synchrotron lengths, and in an oscillator at satura-
tion the synchrotron period of the electrons in the pon-
deromotive well is precisely of the order of magnitude of
the wiggler length.

The study of the largest imaginary part eigenvalue of
the matrix in Eq. (15) shows that there is, as expected, a
resonance between the synchrotron motion of the elec-
trons at the bottom of the potential wells and the beating
between the pump and sideband modes, so that the ex-
ponential gain is peaked at n/N =Q, /k, [Fig. 4(a)].
Equation (14) describes the time-dependent building of
this resonance.

103
] -1
] (a) Q=0,=8.67m
10" :
T :
I 1
o | |
N— 1 I
10 < I I
& ] f :
d B 1 I
. I 1
SO . !
I ]
1 3 : :
] | I
<4 ] 1
N i 1
7 I i
- I !
| 1
10_1 T T T T T T F[ T T [11 T T T T T T
-5 -4 -3 -2 —1 0 1 2 3 4 5
relative frequency shift (%)
10°3
] -1
] (b) Q=2.9m
10 *
NN J :
£ |
™ 4 |
N— |
70 3 ! !
g 3 b
d B I i |
_ 1 | I
D) i ] | I
| | I
1 1 1
1 3 [ [ |
j I I I
3 1 ! !
A I I I
7 i ! 1
4 ! ! !
i I !
10 " +————1—
-5 -4 -3 -2

-1 0 1 2 3 4 5
relative frequency shift (%)

FIG. 4. One-pass gain curves for two equilibrium initial con-
ditions labeled with their synchrotron frequency ). The posi-
tions of the resonant frequencies n /N =jQ /k,, are also indicat-
ed. Since the transient regime is different for symmetrical side-
bands, these curves are not symmetrical.
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IV. SIDEBAND GROWTH
FOR NONDEEPLY TRAPPED ELECTRONS

Let us now consider the case of a general initial equi-
librium electronic distribution. Since we deal with the
linear regime, we can consider the independent contribu-
tions of distributions concentrated on generic invariant
curves of H,. The integro-differential structure of Eq.
(14) is preserved:

n
1+
N

X [dz'Ft(z =2 [ Y, (z)~ Y%, (2],
0
(16)

(Bn +ldz )yn =%"th

where the kernel #(z) is now an anharmonic 27/
periodic function, where () is the pulsation of the motion
on the considered invariant curve. Using the action-
angle variables, it is possible to give in closed form an ex-
pression for this kernel [18], but the evolution equation
can no longer be easily put under a simple form similar to
Eq. (15). However, expanding the kernel as a Fourier
series and keeping only a finite number k of terms,

k
H(z)= 3, H;sin(jQz) , amn

j=1

we can generalize (15) with a square matrix of dimension
(2+2k). This formulation shows that the beating wave
due to the sideband will resonate with all the present har-
monics F; of the electronic motion, at n /N =jQ/k,.
As Q goes to zero close to the separatrix, one observes
more and more resonances. This remark is used in [18]
where it is shown that in the low-gain asymptotic regime
the sideband generation is mainly due to electrons close
to the separatrix.

We performed very-low-noise numerical simulations to
picture the sideband evolution including the transient re-
gime, starting with an equilibrium electronic distribution
concentrated on an invariant curve of H,. With an initial
ratio between the sideband and pump mode energies of
1075, an optimization of the electron sampling allows us
to inhibit numerical noise down to 107!°. We found
features that remain very similar to the situation de-
scribed in Sec. III: although they have equal asymptotic
exponential growth rates, the high- and low-frequency
symmetrical sidebands have very different histories, in-
cluding a strong depletion of the high-frequency sideband
for short times. This is why the finite-length sideband
gain curves (Fig. 4) are not symmetrical and may have a
complicated shape. Nevertheless, the resonances at
n/N =jQ/ky are visible for frequency shifts such that
the asymptotic regime has been attained.

It appears in Fig. 4 that the envelope of the resonances
occurring for different orbits, either deep in the well or
not, remains roughly constant. This illustrates the predic-
tion of [18] where it is stated that the same sideband fre-
quency is generated either by deeply trapped electrons or
by the summation of the resonances for electrons close to
the separatrix.

However, in an actual standard experiment the initial

electron distribution is uniform in ¥. For an oscillator, it
is necessary to bridge the gap between academic ap-
proaches and the more realistic results presented in Sec.
I1. For that purpose, we performed very low-noise one-
pass numerical simulations starting from a nonbunched
electron distribution.

Some results for nonbunched beams are depicted in
Fig. 3(b). Qualitatively, they look very much like the
academic case of Fig. 3(a). One difference, however, is
the appearance of a preliminary phase (about 1.5 m in
our case) during which the electrons bunch, and the elec-
tron plus laser system reaches a quasiequilibrium state
similar to the initial state of Sec. III; this is supported by
noticing that it takes about the same bunching time (1.5
m) to the phase derivative v of the laser field for reaching
its “asymptotic” value. Only in a second phase does the
electron motion begin to feed the sidebands in a way
similar to the idealized case, beginning with a strong de-
pletion of the high-frequency sideband. Of course, except
if the coupling is too weak, sidebands will begin to grow
even during the bunching phase. Now in a standard ex-
periment where the fundamental mode has been brought
to saturation, the synchrotron and wiggler lengths are of
the same order of magnitude. Therefore electrons have
just enough time to bunch, so that they do not actually
experience the second phase, and a fortiori they never see
the exponential regime. This shows a major limitation of
the usual academic sideband analysis for FEL oscillators.

V. SIDEBAND INSTABILITY AND TAPERING
IN AN AMPLIFIER FEL

To investigate the effect of tapering, we first consider
one-pass simulations in a long wiggler. The initial value
of a,, is supposed to be large enough to support a strong
tapering without eliminating the coupling at the end of
the wiggler. This is typically the situation of Ref. [4]
where it appears that sidebands are strongly inhibited.

We consider the FEL parameters given in [4]: a 25-m-
long wiggler is tapered from a,=1.7 down to a,=0.4.
This implies that the resonant electron energy is de-
creased by an amount of 35%. In accordance with [4],
we observe a strong depletion of the sideband due to the
tapered wiggler. This shows that 1D simulations are
relevant to investigate sideband generation despite the
lack of gain focusing. This self-consistent 2D effect is re-
sponsible for some power enhancement (4], but is weakly
coupled to sideband dynamics.

In Fig. 5, we plot the growth of two symmetrical typi-
cal sideband lines for uniform [Fig. 5(a)] and tapered
[Fig. 5(b)] wigglers. For positions z larger than 5 m, the
exponential growth rate decreases from 0.36 m™' down
to 0.16 m™! from the uniform to the tapered case. Ac-
cording to [4], this leads at the end of the wiggler to a
fundamental mode many decades above the rest of the
spectrum. To clarify this, we compare three different ap-
proaches.

Approach 1. We perform a realistic simulation with a
nonbunched initial condition (stars in Fig. 5). From this
simulation, we measure the average trapping ratio over
the wiggler length. We find 75% (45%) for the uniform
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(tapered) wiggler.

Approach 2. We generalize the model developed in Sec.
III by using an adiabatic assumption: Eq. (15) is un-
changed, but now the synchrotron frequency € and the
phase drift v are functions of z. These functions depend
on a,,(z) and on the laser energy which is evaluated as the
complementary variation of the resonant electron energy.
We use this adiabatic generalization with the effective
trapped charge (full lines in Fig. 5).

Approach 3. To check this adiabatic assumption, we
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FIG. 5. Sideband gain curves for tapered and nontapered
amplifiers. For each simulation, lower and upper sideband
modes are presented. The stars are given by a realistic simula-
tion assuming a uniform initial electron beam. The same simu-
lation, but with a bunched beam (deeply trapped particles), pro-
vides the square points. The full line is obtained by solving
within an adiabatic assumption the perturbation theory in Sec.
III [Eq. (15)]. If the sideband is clearly depleted from the nonta-
pered to the tapered wiggler, it is still large for short distances.

Tapered wiggler z

also provide full numerical simulations for the dynamics
of deeply trapped electrons (squares in Fig. 5). For uni-
form wigglers this fits perfectly Eq. (15) up to saturation
[Fig. 3(a)]. For tapered wigglers, some differences can
emerge because of inertial forces. Indeed [1], the pon-
deromotive potential sin(¢) is incremented by a linear
term yd,p,, where p, depends on a,(z) [Eq. (12)]. The
induced constant force will clearly shift the value of the
phase derivative v, [Eq. (13)] used in Eq. (15) by an
amount proportional to d2p,.

For large values of z, the agreement between the three
simulations shown in Fig. 5 is good. It can even be im-
proved if one considers the instantaneous trapping ratio
to solve Eq. (15). This corroborates clearly, for wigglers
long compared to the synchrotron length, that the side-
band instability is only due to trapped electrons [3].
More surprisingly, the collapse of the sideband gain is
mainly due to the variation of instantaneous FEL param-
eters such as a,,(z) or the trapping ratio and not to some
inertial force induced by the time-dependent Hamiltoni-
an. This is clearly shown by Fig. 6 where approaches 2
and 3 are compared for three different taperings.

This shows that, although the detrapping is the sign of
nonadiabatic dynamics, the particles remaining in the
bucket essentially follow an adiabatic dynamics. The
usual picture based upon the nonadiabatic distortion of
electronic motion in the bucket is clearly wrong in that
case.

For small values of z in the tapered wiggler, Fig. 5(b)
exhibits large discrepancies between the three computa-
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FIG. 6. Comparison for deeply trapped particles between the
adiabatic model and full simulation (Sec. V). The agreement is
correct for the uniform wiggler (curves a) and for a tapered
wiggler where the wiggler parameter goes from a,, =1.72 down
to a,=1.02 (curves b). For a stronger tapering (a, =0.32 at
the end of the wiggler), we observe a slight difference (curves c).
This shows that the effect of tapering on sideband generation is
mainly explained by parameter variations and not by inertial
forces.
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tions. For trapped electrons, the realistic sideband evolu-
tion is delayed from the one given by Eq. (15). For non-
bunched electrons, the growth rate is even larger. Such a
large disagreement is not well understood and it illus-
trates the complexity of transient regimes where bunch-
ing mechanisms can induce delays.

Moreover, one observes that even with such a strong
tapering rate, the effective sideband gain is still close to
10 after 5 m of tapered wiggler. Clearly, in an oscillator
experiment, this would lead to a strong broadening. This
is basically due to the fact that it is not possible to taper
strongly the beginning of the wiggler since some bunch-
ing length is required before lowering the bucket. It is
the case for simulations of Ref. [4] and Fig. 5 where the
first two meters of the wiggler are not tapered.

To enforce this conclusion, we use a comparable strong
parabolic tapering (a,, =1.7 down to a,=0.4) in an os-
cillator computation with a 1-m-long wiggler. The trap-
ping ratio goes from 75% down to 10% at z =0.5 m be-
cause of the parabolic profile of the magnetic field. But,
at the same time, the synchrotron length shortened at
L,=0.5 m due to a strong efficiency enhancement. So, a
large amount of trapped particles undergo a full synchro-
tron period which generates sidebands: after a large
number of round-trips, we observed a broad-spectrum re-
gime.

As an essential difference with oscillator experiments,
it is not possible in an amplifier to speak about the
asymptotic equilibrium. Indeed, it would imply that we
push the dynamics for arbitrary large wiggler lengths,
which is clearly impossible with a decreasing magnetic
field. So, a tapered amplifier experiment is basically a
finite-time experiment, such that sidebands can appear to
be definitively suppressed. On the contrary, in an FEL
oscillator, a realistic asymptotic regime is defined with an
arbitrary number of round-trips. This basic distinction is
emphasized by the following analysis.

VI. SIDEBAND INSTABILITY AND TAPERING
IN AN FEL OSCILLATOR

We are now in a position to come back to the study of
sideband generation in a tapered FEL oscillator, as it ap-
pears in Sec. II. Sideband computations in Sec. IV as-
sume some given laser initial conditions (here both
symmetrical sidebands of zero phase and equal ampli-
tude). Since the symmetrical modes are coupled, the ac-
tual gain per pass, which relates the value 6 ,(L,,) of the
sidebands at the end of the wiggler to their value &,,(0)
at the entrance, is a 4 X4 real matrix €. This matrix can
be obtained numerically by computing the laser field
64,(L,) with four different choices of the initial condi-
tions 6.,(0). However, a scalar sideband gain can be

defined as the maximum amplitude of the eigenvalues of -

§. Comparing this gain to the cavity losses tells us
whether or not the sideband instability will be triggered.
This is what we did for tapered systems, for the parame-
ters corresponding to Fig. 2. Although these sideband
gain curves have a rather complicated shape, which is nu-
merically difficult to stabilize, the thresholds are not very
sensitive, and one can draw some semiquantitative con-

clusions. As expected, it appears that tapering lowers the
sideband gain (Fig. 7) so that, in certain cases, it will drop
below the losses: this is sideband inhibition. More gen-
erally, these gain curves provide a simple way to find the
size of a filter necessary to eliminate the sideband for a
given value of the cavity losses, provided the pump-mode
amplitude and position are kept fixed (the following
shows that the situation is actually more complicated).

The inspection of gain curves similar to those of Fig. 7
leads to the definition of region I in the map of Fig. 2: it
is the regime where the sideband should not grow, ac-
cording to the previous analysis. It appears that we are
far from the end of the story, since we observe both low
brightness spectra in region I and high brightness spectra
outside region I (where the sideband instability is expect-
ed). Actually, it should not be forgotten that (i) the pump
mode still evolves while the sideband develops and (ii) the
system still has a history after the sideband instability,
until saturation. Let us briefly review these two issues.

First, to analyze the sideband growth, we fixed the po-
sition and amplitude of the fundamental mode. But, in a
realistic FEL oscillator, this amplitude varies continuous-
ly from noise up to saturation, and the corresponding
sideband gain curve evolves accordingly. Therefore it is
clearly not true that the sideband only develops after the
fundamental mode has reached its saturation level. It
happens that the sideband growth rate can be higher for
a lower energy of the pump mode, so that sidebands can
be observed for filters narrower than those predicted by
only considering the saturation level of the pump mode.
This is what happens in Fig. 2 for uniform wigglers
(AB /B =0) and narrow filters (¥ <3%).

Second, a careful analysis of the data in region II
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FIG. 7. Sideband gain curves for various values of the taper-
ing amplitude AB/B. Although tapering tends to lower the
sideband gain, the inhibition can be made complete only with
the help of a filter. The maximum authorized width for this
filter may be determined from the comparison between the gain
curve and the losses threshold.
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shows that a final monochromatic laser field can result
from a complicated dynamics due to mode competition.
Various scenarios may occur depending on the filter
width F. With a very narrow filter ( <<1%), the linear
gain is almost constant over the filter range, so that the
spectrum at the beginning of the nonlinear regime is still
flat, which is completely different from the usual situation
where a monochromatic field is assumed. The evolution
of this flat spectrum is not driven by the sideband insta-
bility but by mode competition [22], which leads to a
monochromatic field with a frequency equal to the lower
bound of the filter. This evolution can be interpreted as a
boundary effect: each mode within the filter bandwidth is
coupled by mode competition to its closest neighbors
with higher and lower frequencies, except at the edge of
the filter where the competition is roughly twice smaller.
For an intermediate filter bandwidth, the scenario is
different: a monochromatic laser field develops as usual,
followed by a sideband which reaches the same order of
magnitude. But then the filter prevents the generation of
a third frequency, and mode competition between the
pump and sideband modes leads to the elimination of the
pump mode, and to the observed high brightness. Such a
nontrivial effect of filtering illustrates the interaction be-
tween different modes in the nonlinear regime.

VII. CONCLUSION

The optimization of efficiency and monochromaticity
in high-power FEL’s makes necessary an improved un-
derstanding of the mechanisms controlling spectral
broadening effects in uniform as well as in tapered
wigglers. We presented first an investigation based on
full numerical simulations for tapered FEL oscillators.
This shows that tapering does not always provide an
efficient way to control the spectral evolution: it can be
overwhelmed by broadening mechanisms which induce a
complex electronic phase-space structure. Nevertheless,
by coupling a filter and a tapered wiggler, we can exhibit
the connection between tapering and spectral dynamics;
this generates the intricate map given in Fig. 2, resulting
from the antagonisms between tapering and the broaden-
ing mechanisms.

In order to understand, and eventually to control, the
transition between narrow- and broad-spectrum regimes,
it is necessary to go beyond the numerical investigations
presented in Fig. 2. Since the sideband instability is given
as the driving mechanism responsible for spectral
broadening, we devoted an important part of this paper
to its analysis.

Long-amplifier investigations in Sec. V emphasize (i)
the important role of the detrapping in the sideband inhi-
bition and (ii) the adiabaticity of the trapped particles
motion even for strong tapering. In practice, the de-
crease of the exponential growth rate can lead, for long
but finite wigglers, to a strong depletion of the sideband.
But, in general, this decrease is not large enough to
prevent sideband generation in an FEL oscillator. From
a basic point of view, this stresses that the sideband can-
not be said to be fully destroyed in tapered amplifiers.

For FEL oscillators, the standard presentation of the

sideband instability, starting from an equilibrium with
deeply trapped electrons and assuming an exponential
growth rate, is largely irrelevant for the prediction of the
spectral behavior at saturation. There are two kinds of
reasons for this.

(i) First, such an analysis of the sideband instability
overlooks very important issues. At saturation for the
fundamental laser mode, the synchrotron and wiggler
lengths are roughly equal. Even in strongly tapered
wigglers with shortened synchrotron length Lg, trapped
electrons run over a period Lg and can generate side-
bands.

As detailed in Sec. III, this implies that the sideband
gain per pass is given by the transient regime, which is
very different from the exponential gain. Furthermore, it
is known that electrons that are not deeply trapped give
an important contribution to the exponential sideband
gain, especially those near the separatrix. Numerical
simulations show (Fig. 4) that this is true even in the
transient regime. The approach developed in Sec. III
could be extended to take into account more and more
anharmonic orbits; however, it will not enable us to con-
sider orbits very close to the separatrix. Therefore, fur-
ther developments are required to make the connection
between the attractive idea of resonance resummation
close to the separatrix [18], and the approaches available
for the transient regime. But, even if this was done, it
should be taken into account that the initial condition for
the electrons is not an equilibrium, but a monochromatic
translationally invariant beam. Even a full understanding
of the sideband instability starting with an equilibrium as
an initial condition would not make available any quanti-
tative prediction for the realistic sideband evolution: the
sideband evolutions with nonbunched and equilibrium in-
itial conditions present the same general outlook only
after a bunching phase (Fig. 3).

(ii) Second, the sideband instability is far from being
the only mechanism involved in the long-term spectral
evolution. For example, the FEL oscillator behavior is
also driven by mode competition or difference frequency
generation, as presented in paper I. Examining in detail
the spectral behavior versus filter and tapering (Fig. 2),
we were led to divide the plane into different regions
dominated by different mechanisms. For very narrow
filters (region I), the sideband instability is inhibited by
the combined effect of filtering and cavity losses (Fig. 7),
so that we get a monochromatic laser field with very high
brightness ($>>3). On the contrary, very wide filters
(region 1V) allow a broad spectrum with universal bright-
ness (B = 1), extensively studied in paper I, and which is
driven by a sequence of sideband instabilities and
difference-frequency generations. But for filters of inter-
mediate width, and depending on tapering rates, we ob-
serve complex equilibria. For example, one can observe a
transition region (region III) where the spectrum is
broad, but narrower than the filter (1 <8=3). Finally,
in region II the asymptotic spectrum is very narrow (al-
though the sideband does develop), due to nonlinear
mode competition within a small available frequency in-
terval.

This paper has shown the multiplicity of the possible
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spectral evolutions allowed by the FEL dynamics with
strong couplings. A perturbative analysis working in the
small-field limit is unable to explain these global results
presented in Fig. 2. As suggested in paper I, it is there-
fore necessary to develop approaches complementary to
the sideband instability or the difference frequency gen-
eration to understand the spectral evolution and the
asymptotic equilibrium as a whole.
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APPENDIX A: CALCULATION
OF THE PHASE DRIFT v, AT EQUILIBRIUM

We consider an equilibrium electronic distribution

o&,p)=f(Hy(&,p)). The normalization [Eq. (4)] and
the phase drift [Eq. (9)] give
—mc—fZﬂdg‘f dph
+ o0 2 .
v,—Af] dpgfo dEho(E,p)exp(—iE) ,
with 4 =pge’ca, #,/2V/ p,|6,|. Since (p—p,)/p,

remains small, we only kept the lowest order in
(p —p,)/p,. The Hamiltonian is

Hy(&,p)=B(1—p/p,*+C cost ,

where B=1k;(1+1a}) and C=1%,a,|6,l, and the
distribution &, can be decomposed in elementary equilib-
rium distributions each characterized by an energy
W=(2u—1)/C (we will consider trapped -electrons:
from the bottom to the top of the potential well, W
ranges from —C to C, and u ranges from O to 1):

o(&:p)=F(Ho(&,p))= [ dW f(W)S(H(E,p)—W) .
This leads to

pe=me [dW fW)5- [*dg [ " dp 8(Hy(£,p)~W)

_ 1 o .
v, =A [dW W)~ [ Tdgexp(—ig)

X [ "dp 8(Ho(6,p)~W)

The p integral is readily evaluated:
W/C —cosf <0, and

it is zero for

W)= —>=—=(W/C — cost)™/?

2\/BC
for W/C — cos§ >0,

J" " dp 8(H(&,p)—

so that

___mc _1_ ] 12
pe= e [ AW FOW)— [ {dEW/C + cos) ™12,

fd‘Wf(‘w

vy =

2\/BC
X fo dEcosé(W/C + cost) ™12 |

where W/C —cos§>0 for (E[m—¢,m7+4]. With
u=p"1%in(£/2), the ¢ integrals are complete elliptic
integrals of the first and second kind [23]:

fo"dg(ﬂv/c + cos¢) 172
—f du(1—pu?)"VY(1—yu?
f0¢d§cos§(W/C+cos§ —12

)T12=K (),

=foldu(1—,uu2)’1/2(1—2yu2)(1—u2)‘1/2
=2E(u)—K(u),
so that
M [a
pe= 2\/BCf Wf (WK (),
v,= Wfdﬂ»f(w){zz«:(p)— (W) .

The normalization of the distribution f can be eliminated
from these equations, so that

JdW f(W)(2E (u)—K ()}
JdW fF(W)K(p) ’

V=V

where v,, is given by Eq. (13). If f is a Dirac distribution
centered on a given energy W, this reduces to

1HW/C | Gith Fu=2E8) |

vr=v K ()

At the bottom of the well W= —C and =0, so that we
find v,=v,. Although the integrals present logarithmic
singularities at the separatrix (W=C and p=1), the
function 7 is regular and ranges from 1 to —1 when the
equilibrium trajectory ranges from the bottom to the top
of the potential well.

APPENDIX B: DERIVATION
OF THE FIRST-ORDER EQUATIONS
FOR THE SIDEBAND GROWTH

Once an equilibrium distribution is given, we have seen
that the natural phase variable for the electrons is
{=1v—v,z where v, has been calculated in Appendix A.
The dynamical equations [Egs. (2) and (3)] can be restated
with this variable, which induces a corresponding change
of variable for the electric field phases:

Ly, —k,) .

Y,=6, expif,z with B,=v,+ N

One finds
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(B, +id,)Y,
=pge’ca,
+ oo 2 27N
Xfl 2Vp 21er déh(z,6,p)
n
Xexp |—i|[1+2 £,
exp | —i N gl
(3, +(3,H)d;—(0:H)3, h (2,§,p)=0,
3,H=(k,~v,)—k (1+al/2)/2p ,
—0:H=1%a,Im 3 Y, exp H_F 5
n (<< N)

The electronic density and the Vlasov operator can be
decomposed into an equilibrium part and a perturbation,
h=hy+h, and D =D,+ D, with

D0=[82+(apH0)a§"(a§H0 )ap] s

=1Ha,Jm ¥ Y, exp

n (#0)

1+
N

gla,,,

so that, to the first order in ¥, and h,, the dynamical
equations become

(B, +id,)Y,
=pqe’ca, K
+ o dE 1 21rN
1 s\/;)_ 27N a6 (2,6,p)
n
X —i|l+— ,
exp | —i N ]g’

Dyh,=—Dhy .

Now we deal with deeply trapped electrons, so that 4,
and h, are concentrated around the resonant points

(E=2m +1)m,p=p,):
p)=3 hi(t—2m +1)m,p—p,),

2m +1)m,p —p,),

hy(z,6,p)= 3 hi'(z,6—

dh)
h{(z,J,0)=B'*—2

We can now go to the equation on the electromagnetic field:

(Bn+idz)‘3/,.:Df dp2 wadézh”’(zg (2m +1)m,p —p,)exp | —

with D =pge’ca, ,/2V'p. Since each of the h}*

. + o 1 T
(B,+id)Y,=D [ “dp—— [ag S 7

fdz sin[6—Q,(z—z)]Im ¥ [¥,(z')/Yylexp

n (#0)

z,{—m,p —p,)exp

where the functions 4 and h 7" are peaked around the ori-
gin (the functions i7" are different from one another, so
that the perturbation 4, is not 27 periodic). We can now
expand D, around each resonant point:

Dy={3,+ A(p —p,)3;—B[{—

with

2m + 1713, ,

20k, —v, )?
A:‘—_——', B"—?{la yo, Qh

1/2
PRTERYER (AB)'? .

It is then useful to use variables proportional to the ac-
tion and angle centered on each resonant point:

E=02m +1)m— A4, cosb,,, p=p,+B'J,sinb,, ,
so that in the vicinity of ({=(2m +1)m,p =p,),

ho(&,p)=h3W,,), hy(z,6,p)=
Dy=(3,+,9¢,) ,

h™(z,d,,,0,,) ,

D,=—B"’ Im 3 (Y,/Y,) exp
n (#0)

ii—(zm +1)7

d
sm((9m )——— .

1
+ 7 cos(Gm)dOm

m

The first-order Vlasov equation can now be written
around each resonant point:

(3, +0,0,)h ™ (2,J,0)

dh?
— B /% 0
sin(8) a2

XIm Y [¥Y,(z2)

n (#0)

/Y,]exp i—]%(2m + 1)

This equation is readily integrated by changing the vari-
able 8 into 6—Q,z:

i%(Zm +1)r

i1+

~ |6

)

is peaked in a given 27 interval in &, this can be rewritten,

(E+2m)

n
! N

(

Since h " is peaked at {=1r, we can expand the exponential to the first order in {=m ({ =1 gives a zero contribution):
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. . n
(B, +id)Y, =i |1+

1 + o0 2 m
Doy =1, e [T = mp —p)exp

—i%:;(2m +1)r

Going to the (J,0) variables (the Jacobian is ,J), this becomes

1+

+i ——jq12
(B, +id,)Y, i D N

1 2 ,,,
2N 2 [ Q,7%4J d6 cos()h 7 (2,J,0) exp

—-i%(Zm +1)r

Let us put the expression of 4" in this formula; the 6 integral is trivial since we are at the bottom of the well where the
motion is harmonic. The J integral can be performed by parts, which leads to the density p,:

Q
n hPe z .
+id =D |1+— |— 'sin[Q,,(z'—
(B, +id,)Y =i N mc‘.Vofodzsm[ #(2'—2)]
XL $ Im
Nm,k
k70

Y, exp

exp

i§(2m +1)r

—i%(Zm +1)r

The summation on m (position of the resonant points along the electron beam) and on k (laser mode coupled to ¥ ,)

leads to

Q’hpe
mecY,

1+

(B, +id,)Y,=iD N

J dz'sin[ Q2 —2))( =i/, ()= Y2, (2],

where the asterisk denotes the complex conjugate. This can be rewritten

. 1 n
(Bn +ldz)y,,=—2—vhﬂh 1+F

fozdz’sin[ﬂh(z —z)[Y,(2)—Y*,(z")] .
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